Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20354, 2022. graf
Article in English | LILACS | ID: biblio-1403749

ABSTRACT

Abstract Colorectal cancer (CRC) one of the leading cause of cancer-related deaths worldwide. With the presently available knowledge on CRC, it is understood that the underlying is a complex process. The complexity of CRC lies in aberrant activation of several cellular signaling pathways that lead to activation and progression of CRC. In this context, recent studies have pointed towards the role of developmental pathways like; hedgehog (HH), wingless-related integration site (WNT/ß-catenin) and Notch pathways that play a crucial role in maintenance and homeostasis of colon epithelium. Moreover, the deregulation of these signaling pathways has also been associated with the pathogenesis of CRC. Therefore, in the search for better therapeutic options, these pathways have emerged as potential targets. The present review attempts to highlight the role of HH, WNT/ß-catenin and Notch pathways in colon carcinogenesis


Subject(s)
Colorectal Neoplasms/pathology , Pathogenesis, Homeopathic/classification , Colonic Neoplasms/pathology , Comprehension , Carcinogenesis
2.
Biol. Res ; 52: 33, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019498

ABSTRACT

BACKGROUND: Studies have shown that cancer susceptibility candidate 11 (CASC11), a newly discovered long non-coding RNA (lncRNA), was aberrantly overexpressed in hepatic carcinoma, gastric cancer and colorectal cancer. However, its effects on cervical cancer has been kept unknown up to now. The present study was aimed to investigate the relationship between lncRNA CASC11 and cervical cancer and further explore the mechanism of CASC11 effect on cervical cancer progression. MATERIALS: Quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of CASC11 in cancerous and adjacent normal tissues of patients with cervical cancer as well as in cell lines. The proliferation, migration, invasion and apoptosis were assayed after transfecting the cell with si-CASC11 or pcDNA3.1-CASC11. TOP/FOP-Flash luciferase reporter assay and western blot were used to analysis the activation of Wnt/ß-catenin signaling pathway. Si-CASC11-transfected HeLa cells were subcutaneously inoculated into male athymic (nude) mice to investigate the effect of CASC11 on the tumor formation. RESULTS: We discovered that CASC11, the expression of which was positively associated with the tumor size and the FIGO staging and negatively related to the patients' survival rate, was up-regulated in the cervical cancer tissues and cell lines. Silencing CASC11 inhibited the proliferation, migration as well as invasion and promoted the cell apoptosis. Conversely, overexpression of CASC11 facilitated the cancer cell's proliferation, migration and invasion ability and suppressed the apoptosis. Further study showed that CASC11 promoted the migration and invasion of cervical cancer cells by activating Wnt/ß-catenin signaling pathway and silencing CASC11 inhibited the tumor growth in vivo. CONCLUSION: Our study demonstrated that CASC11 promoted the cervical cancer progression by activating Wnt/ß-catenin signaling pathway for the first time, which provides a new target or a potential diagnostic biomarker of the treatment for cervical cancer.


Subject(s)
Humans , Animals , Female , Mice , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Genetic Predisposition to Disease , MicroRNAs/genetics , beta Catenin/genetics , Wnt Signaling Pathway/genetics , Uterine Cervical Neoplasms/virology , Apoptosis/genetics , Disease Progression , Papillomavirus Infections/complications , Cell Proliferation/genetics , Genome-Wide Association Study , Flow Cytometry
3.
Biol. Res ; 51: 31, 2018. graf
Article in English | LILACS | ID: biblio-983936

ABSTRACT

BACKGROUND: miR-214 was demonstrated to be upregulated in models of renal disease and promoted fibrosis in renal injury independent of TGF-ß signaling in vivo. However, the detailed role of miR-214 in acute kidney injury (AKI) and its underlying mechanism are still largely unknown. METHODS: In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell model were used to study AKI. The concentrations of kidney injury markers serum creatinine, blood urea nitrogen, and kidney injury molecule-1 were measured. The expressions of miR-214, tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, were detected by RT-qPCR. The protein levels of Bcl-2, Bax, Dickkopf-related protein 3, ß-catenin, c-myc, and cyclinD1 were determined by western blot. Cell apoptosis and caspase 3 activity were evaluated by flow cytometry analysis and caspase 3 activity assay, respectively. Luciferase reporter assay was used to confirm the interaction between miR-214 and Dkk3. RESULTS: miR-214 expression was induced in ischemia-reperfusion (I/R)-induced AKI rat and hypoxic incubation of NRK-52E cells. Overexpression of miR-214 alleviated hypoxia-induced NRK-52E cell apoptosis while inhibition of miR-214 expression exerted the opposite effect. Dkk3 was identified as a target of miR-214. Anti-miR-214 abolished the inhibitory effects of DKK3 knockdown on hypoxia-induced NRK-52E cell apoptosis by inactivation of Wnt/ß-catenin signaling. Moreover, miR-214 ameliorated AKI in vivo by inhibiting apoptosis and fibrosis through targeting Dkk3 and activating Wnt/ß -catenin pathway. CONCLUSION: miR-214 ameliorates AKI by inhibiting apoptosis through targeting Dkk3 and activating Wnt/ß -catenin signaling pathway, offering the possibility of miR-214 in the therapy of ischemic AKI.


Subject(s)
Animals , Male , Rats , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Catenins/metabolism , Acute Kidney Injury/metabolism , Wnt Signaling Pathway/genetics , Rats, Sprague-Dawley , Chemokines , Intercellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Adaptor Proteins, Signal Transducing , Cell Proliferation , Disease Models, Animal , Catenins/genetics , Acute Kidney Injury/chemically induced
4.
Chinese journal of integrative medicine ; (12): 267-275, 2016.
Article in English | WPRIM | ID: wpr-287168

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of Weipixiao (胃痞消, WPX) on Wnt pathway-associated proteins in gastric mucosal epithelial cells from rats with gastric precancerous lesions (GPL).</p><p><b>METHODS</b>Sprague Dawley rats were randomly divided into control, model, vitacoenzyme (0.2 g·kg(-1)·day(-1)), WPX high-dose (H-WPX, 15 g·kg(-1)·day(-1)), WPX medium-dose (M-WPX, 7.5 g·kg(-1)·day(-1)) and WPX low-dose (L-WPX, 3.75 g·kg(-1)·day(-1)) groups. After successfully establishing the GPL model, the rats were consecutively administered WPX or vitacoenzyme by gastrogavage for 10 weeks. Differential expression of Leucine-rich repeat-containing G-proteincoupled receptor 5 (Lgr5), matrix metalloproteinase-7 (MMP-7), Wnt1, Wnt3a, and β-catenin in gastric mucosal epithelial cells in all groups were immunohistochemically detected, and the images were taken and analyzed semiquantitatively by image pro plus 6.0 software.</p><p><b>RESULTS</b>Gastric epithelium in the model group showed significantly higher expression levels of Lgr5, MMP-7, Wnt1, Wnt3a and β-catenin than those of the control group(P<0.01). Interestingly, we also observed Lgr5+ cells, which generally located at the base of the gastric glandular unit, migrated to the luminal side of gastric epithelium with GPL. The expression levels of Lgr5, MMP-7, Wnt1, and β-catenin were all down-regulated in the L-WPX group as compared with those of both model and vitacoenzyme groups (P<0.05). A similar, but nonsignificant down-regulation in expression level of Wnt3a was noted in all WPX groups (P>0.05).</p><p><b>CONCLUSION</b>Our findings suggested that the therapeutic mechanisms of WPX in treating GPL might be related with its inhibitory effects on the expressions of Lgr5, MMP-7, Wnt1, β-catenin and the aberrant activation of Wnt/β-catenin pathway.</p>


Subject(s)
Animals , Male , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Epithelial Cells , Metabolism , Pathology , Gastric Mucosa , Pathology , Immunohistochemistry , Matrix Metalloproteinase 7 , Metabolism , Precancerous Conditions , Drug Therapy , Pathology , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled , Metabolism , Staining and Labeling , Stomach Neoplasms , Drug Therapy , Pathology , Wnt Proteins , Metabolism , Wnt Signaling Pathway , beta Catenin , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL